D. Liu and X. Zhu, Erratum to: ?Fractional chromatic number and circular chromatic number for distance graphs with large clique size?.Journal of Graph Theory47(2) 2004, 129-146

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Erratum to: "Fractional chromatic number and circular chromatic number for distance graphs with large clique size" Journal of Graph Theory 47(2) 2004, 129-146

Let m ≥ 0 be the smallest integer such that S ∩ Ti−a+(m−1)(b−a) = Ø or i+b+m(b−a) ≥ a+c. If S∩Ti−a+(m−1)(b−a) = Ø, let i2 = i−a+(m−1)(b−a). Otherwise, let i2 = i+b+m(b−a). If it is the former case, then m ≥ 1 and i2 ∈ I (since i + b + (m− 1)(b− a) < a + c, so i2 = i− a + (m− 1)(b− a) < c− b = a). We now show that if it is the latter case, then i2 ∈ U . Assume i2 = i + b + m(b− a). Then i + b + ...

متن کامل

Fractional chromatic number and circular chromatic number for distance graphs with large clique size

Let Z be the set of all integers and M a set of positive integers. The distance graph G(Z,M) generated by M is the graph with vertex set Z and in which i and j are adjacent whenever |i − j| ∈ M . Supported in part by the National Science Foundation under grant DMS 9805945. Supported in part by the National Science Council, R. O. C., under grant NSC892115-M-110-012.

متن کامل

The locating-chromatic number for Halin graphs

Let G be a connected graph. Let f be a proper k -coloring of G and Π = (R_1, R_2, . . . , R_k) bean ordered partition of V (G) into color classes. For any vertex v of G, define the color code c_Π(v) of v with respect to Π to be a k -tuple (d(v, R_1), d(v, R_2), . . . , d(v, R_k)), where d(v, R_i) is the min{d(v, x)|x ∈ R_i}. If distinct vertices have distinct color codes, then we call f a locat...

متن کامل

Clique and chromatic number of circular-perfect graphs

A main result of combinatorial optimization is that clique and chromatic number of a perfect graph are computable in polynomial time (Grötschel, Lovász and Schrijver 1981). Circular-perfect graphs form a well-studied superclass of perfect graphs. We extend the above result for perfect graphs by showing that clique and chromatic number of a circularperfect graph are computable in polynomial time...

متن کامل

Circular Chromatic Number and Graph Minors

This paper proves that for any integer n ≥ 4 and any rational number r, 2 ≤ r ≤ n − 2, there exists a graph G which has circular chromatic number r and which does not contain Kn as a minor.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Graph Theory

سال: 2005

ISSN: 0364-9024,1097-0118

DOI: 10.1002/jgt.20091